

SiLibeads®

... crystal clear water

Microbiological and chemically pure

Precisely spheric and uniform

Large variety of narrow size tolerances

Very high crush strength and abrasion resistance (compared to gravel)

Pure and smooth surface - minimizing biological build-up

Maximum permeability and effective porosity

Maximum well capacity

Conservation of energy and backwash water

Article	Diameter mm	(approx.) Mesh Sizes	Compressive Resistance (Reference values for middle diameter)	Bulk density kg/l	Bulk density lbs./ ft.2	Particle Size Conversion	
4501R	0.25 - 0.50	60 – 35	N/A	1.46	91.14	Mesh	mm
45015R	0.40 - 0.60	40 – 30	N/A	1.47	91.77	80	0.177
45021R	0.60 - 0.90	30 – 19	N/A	1.49	93.02	70	0.210
4503R	0.80 - 1.00	22 - 18	170 N	1.50	93.64	60	0.250
4504R	1.00 - 1.30	18 – 15	250 N	1.51	94.27	50	0.297
4505R	1.25 - 1.65	16 - 12	370 N	1.51	94.27	45	0.354
4506R	1.55 - 1.85	13 – 11	520 N	1.52	94.89	40	
4507R	1.70 - 2.10	12 – 9	620 N	1.52	94.90		0.420
4508R	2.00 - 2.40	10 – 8	770 N	1.53	95.51	35	0.500
4510R	2.40 - 2.90	8 – 7	920 N	1.53	95.52	30	0.595
4511R	2.85 - 3.45	7 – 6	1,270 N	1.53	95.53	25	0.707
4512R	3.40 - 4.00	6 – 5	1,550 N	1.53	95.54	20	0.841
4513R	3.80 - 4.40	5 1/2 - 4 1/2	1,900 N	1.53	95.55	18	1.00
4514R	4.50 - 5.50	4 1/2 - 3 1/2	2,350 N	1.49	93.02	16	1.19
4515R	5.00 - 6.00	3 ¾ - 3 ¼	3,150 N	1.47	91.77	14	1.41
Other diameters and tolerances available upon request							

Other d	liameters and	d tolerances av	ailable upon r	'eques

our diameters and tolerances arandore aport request						12	1.68	
	Diameter		Compressive Resistance	Bulk	Bulk		10	2.00
Article	mm	Inches		density kg/l	density lbs./ft.2		8	2.38
			middle diameter)				7	2.83
50165-B	9.40 - 10.60	3/8" - 7/16"	6,000 N	1.45	90.52			
5043 D	10.50 11.50	101001 151001	750011		00.50		6	3.36
5017-B	10.50 - 11.50	13/32" - 15/32"	7,500 N	1.45	90.52			
5018-B	11.50 - 12.50	7/16" - 1/2"	10,500 N	1.45	90.52		5	4.00
5021-B	13.50 - 14.70	17/32" - 9/16"	13,200 N	1.43	89.27		4	4.76
5023-B	15.30 - 16.70	19/32" - 21/32"	16,500 N	1.43	89.27		31/2	5.66

1 Cubic Yard = 27 Cubic Feet

h = Height of Filling

1 kg = 2.2046 lbs. or 1 lb. = 0.4536 kgs

r2 = Inner Cylinder Radius or Casing

1 Cubic Meter = 1,000 liter = 35.315 Cubic Feet

Free of Silanes / Glycol / Epoxy

eby confirm that Silanes, Glycol or Epoxy are not used during the production and packaging proces

Approximate Metric and Imperial Conversion Data

1 US Liquid Gallon = 3.785 liters 1 liter = 0.03531466672148859 Cubic Feet

Calculating Annular Volume => (R2 - r2) x π x h R2 = Outer Cylinder Radius or Borehole Radius

 $\pi = 3.14159265359$ Bead Sizing - Helpful Formula => D = d x F

F = 5 + U for U < 5 and F = 10 for U > 5

		Pari Si Conve
	mm	esh
	0.177	30
	0.210	70
4503	0.250	60
	0.297	50
(CO 10 10	0.354	15
80,000	0.420	ın.

Inches mm 1/4 6.35

0.265 6.73

3/8

7/16

1/2 12.7

5/8 16.0

3/4 19.0

7/8 22.6 1.0

8.00 5/16

9.51

13.5

4513R

SiLibeads®

... crystal clear water

Comparative Lifecycle costs. Water well

				_			
Comparative Lifecycle costs, Water well, alluvial formation,							
depth 25 m natural	gravel vs. q	glass bead	ds as filtern	naterial			
		25 years		40 years			
Capital expenditure	glass beads	gravel	glass beads	gravel			
	EURO	EURO	EURO	EURO			
construction site set up	15,000	15,000	15,000	15,000			
well drilling	7,800	7,800	7,800	7,800			
installations (well screens, etc.)	72,000	72,000	72,000	72,000			
gravel	50	1,800	50	1,800			
glass beads	6,000	0	6,000	0			
pumping test	14,650	14,650	14,650	14,650			
clean out pumping	400	2,400	400	2,400			
sand removal pumping	150	600	150	600			
Total capital expenditure	116,050	114,250	116,050	114,250			
Differences	1,800		1,800				
Percentage total	102%		102%				
Operating costs							
Energy	44,794	59,725	71,670	95,560			
Well rehabilitation (à 10,000)	25,000	50,000	50,000	100,000			
Total operating costs	69,794	109,725	121,670	195,560			
Total costs during lifecycle	185,844	223,975	237,720	309,810			
Percentage total	83%		77%				
Cost saving	38,131		72,090				
percent	17%		2266				

Comparative Lifecycle costs, Water well, bed rock,						
depth 50 m natural gravel vs. glass beads as filtermaterial						
25 years 40				40 years		
Capital expenditure	glass beads	gravel	glass beads	gravel		
	EURO	EURO	EURO	EURO		
construction site set up	20,000	20,000	20,000	20,000		
well drilling	15,000	15,000	15,000	15,000		
installations (well screens, etc.)	101,750	101,750	101,750	101,750		
gravel	1,250	2,500	1,250	2,500		
glass beads	8,000	0	8,000	0		
sand removal pumping	600	1,300	600	1,300		
clean out pumping	225	450	225	450		
Total capital expenditure	146,825	141,000	146,825	141,000		
Differences	5,825		5,825			
Percentage total	104%		104%			
Operating costs						
Energy	62,370	86,625	99,792	138,600		
Well rehabilitation (à 10,000)	30,000	60,000	50,000	100,000		
Total operating costs	92,370	146,625	149,792	238,600		
Total costs during lifecycle	239,195	287,625	296,617	379,600		
Percentage total	83%		78%			
Cost saving	48,430		82,983			
percent	17%		22%			

Relation between glass beads and standard filter:

SiLibeads®

... crystal clear water

Filter Pack Beads



